Event-based vision has been rapidly growing in recent years justified by the unique characteristics it presents such as its high temporal resolutions (~1us), high dynamic range (>120dB), and output latency of only a few microseconds. This work further explores a hybrid, multi-modal, approach for object detection and tracking that leverages state-of-the-art frame-based detectors complemented by hand-crafted event-based methods to improve the overall tracking performance with minimal computational overhead. The methods presented include event-based bounding box (BB) refinement that improves the precision of the resulting BBs, as well as a continuous event-based object detection method, to recover missed detections and generate inter-frame detections that enable a high-temporal-resolution tracking output. The advantages of these methods are quantitatively verified by an ablation study using the higher order tracking accuracy (HOTA) metric. Results show significant performance gains resembled by an improvement in the HOTA from 56.6%, using only frames, to 64.1% and 64.9%, for the event and edge-based mask configurations combined with the two methods proposed, at the baseline framerate of 24Hz. Likewise, incorporating these methods with the same configurations has improved HOTA from 52.5% to 63.1%, and from 51.3% to 60.2% at the high-temporal-resolution tracking rate of 384Hz. Finally, a validation experiment is conducted to analyze the real-world single-object tracking performance using high-speed LiDAR. Empirical evidence shows that our approaches provide significant advantages compared to using frame-based object detectors at the baseline framerate of 24Hz and higher tracking rates of up to 500Hz.
translated by 谷歌翻译
This paper revisits a fundamental problem in statistical inference from a non-asymptotic theoretical viewpoint $\unicode{x2013}$ the construction of confidence sets. We establish a finite-sample bound for the estimator, characterizing its asymptotic behavior in a non-asymptotic fashion. An important feature of our bound is that its dimension dependency is captured by the effective dimension $\unicode{x2013}$ the trace of the limiting sandwich covariance $\unicode{x2013}$ which can be much smaller than the parameter dimension in some regimes. We then illustrate how the bound can be used to obtain a confidence set whose shape is adapted to the optimization landscape induced by the loss function. Unlike previous works that rely heavily on the strong convexity of the loss function, we only assume the Hessian is lower bounded at optimum and allow it to gradually becomes degenerate. This property is formalized by the notion of generalized self-concordance which originated from convex optimization. Moreover, we demonstrate how the effective dimension can be estimated from data and characterize its estimation accuracy. We apply our results to maximum likelihood estimation with generalized linear models, score matching with exponential families, and hypothesis testing with Rao's score test.
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
Open-textured terms in written rules are typically settled through interpretive argumentation. Ongoing work has attempted to catalogue the schemes used in such interpretive argumentation. But how can the use of these schemes affect the way in which people actually use and reason over the proper interpretations of open-textured terms? Using the interpretive argument-eliciting game Aporia as our framework, we carried out an empirical study to answer this question. Differing from previous work, we did not allow participants to argue for interpretations arbitrarily, but to only use arguments that fit with a given set of interpretive argument templates. Finally, we analyze the results captured by this new dataset, specifically focusing on practical implications for the development of interpretation-capable artificial reasoners.
translated by 谷歌翻译
Spectral risk objectives - also called $L$-risks - allow for learning systems to interpolate between optimizing average-case performance (as in empirical risk minimization) and worst-case performance on a task. We develop stochastic algorithms to optimize these quantities by characterizing their subdifferential and addressing challenges such as biasedness of subgradient estimates and non-smoothness of the objective. We show theoretically and experimentally that out-of-the-box approaches such as stochastic subgradient and dual averaging are hindered by bias and that our approach outperforms them.
translated by 谷歌翻译
Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications. Influence diagnostics are powerful statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample statistical bounds, as well as computational complexity bounds, for influence functions and approximate maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We illustrate our results with generalized linear models and large attention based models on synthetic and real data.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
We consider stochastic gradient descents on the space of large symmetric matrices of suitable functions that are invariant under permuting the rows and columns using the same permutation. We establish deterministic limits of these random curves as the dimensions of the matrices go to infinity while the entries remain bounded. Under a "small noise" assumption the limit is shown to be the gradient flow of functions on graphons whose existence was established in arXiv:2111.09459. We also consider limits of stochastic gradient descents with added properly scaled reflected Brownian noise. The limiting curve of graphons is characterized by a family of stochastic differential equations with reflections and can be thought of as an extension of the classical McKean-Vlasov limit for interacting diffusions. The proofs introduce a family of infinite-dimensional exchangeable arrays of reflected diffusions and a novel notion of propagation of chaos for large matrices of interacting diffusions.
translated by 谷歌翻译
本文展示了一种新的方法,可以使用语义分段特征提高面部识别姿势不变。拟议的SEG-DISTILD-ID网络共同学习识别和语义分割任务,然后将分割任务“蒸馏”(Mobilenet编码器)。在强调头置变化的公开数据集中,针对三个最先进的编码器进行了基准测试。实验评估表明,SEG-DISTILD-ID网络显示出显着的鲁棒性优势,相比之下,RESNET-101的测试准确性达到99.9%,VGG-19的96.1%,IntectionV3的vgg-19和96.3%。这是使用顶部编码器推理参数的大约十分之一来实现的。这些结果表明,蒸馏的语义分割特征可以有效地解决面部识别姿势不变。
translated by 谷歌翻译
Masader(Alyafeai等,2021)创建了一种元数据结构,用于分类阿拉伯NLP数据集。但是,开发一种简单的方法来探索这种目录是一项艰巨的任务。为了为探索目录的用户和研究人员提供最佳体验,必须解决一些设计和用户体验的挑战。此外,用户与网站的交互可能提供了一种简单的方法来改善目录。在本文中,我们介绍了Masader Plus,该网络接口供用户浏览masader。我们演示了数据探索,过滤和简单的API,该API允许用户从后端检查数据集。可以使用此链接https://arbml.github.io/masader探索masader plus。可以在此处找到的视频录制说明界面的录制https://www.youtube.com/watch?v=setDlseqchk。
translated by 谷歌翻译